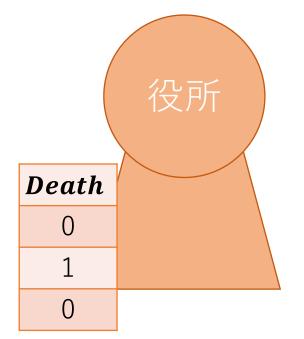
プライバシーを保護した 線形回帰システムの実装と評価

明治大学総合数理学部 菊池研4年 濱永 千佳

研究背景

個人情報保護法改正:要配慮情報(病歴、人種、信条など)

- DPCデータセット(医療データベース)に着目
 - 病気、個人情報、診療情報などからなるデータセット
 - 脳疾患患者のデータ

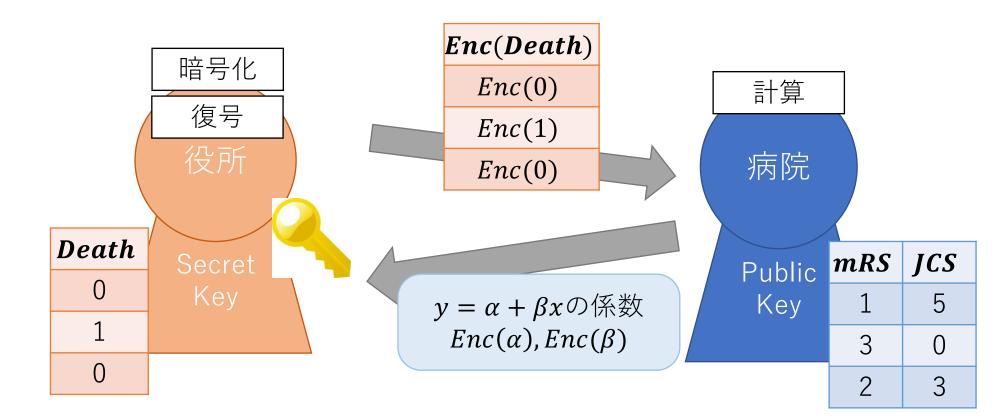

死亡	年齢	性別	意識レベル		がん	病院の規模	肝臓病	身体障害	脳梗塞の種類
0	74	0	意識有り	1	0	2	0	1	0
0	55	1	正常	0	0	1	0	4	0
1	71	0	意識なし	3	0	0	0	5	0

問題点: データベースが分散

・死亡診断書など

→生死の状態

病院にいる間のカルテ→病気歴や治療の記録


死亡に至った 原因、習慣はなにか?

mRS	JCS			
1	5			
3	0			
2	3			

病院

解決方法: プライバシー保護データマイニング

・データを暗号化した状態のまま各種の回帰計算を 行うことにより、データを公開せず、安全に活用する

提案手法

• 3種類の秘匿線形回帰プロトコルを提案

	(1) 単回帰	(2)2変数の重回帰	(3)多変数の重回帰 (n = 2)
モデル	$y = \alpha + \beta x$	$y = \alpha + \beta_1 x_1 + \beta_2 x_2$	$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$
BからAへ 送るデー タ 暗号文数	C,D,E 3	C2,D2,E2, Σ x1, Σ x2 5	F2,G2 7

実験

- 提案手法をscLinearシステムとして実装した.
- DPCデータセットを用いて、scLinearを2点から評価する.
 - 計算の正確性
 - パフォーマンス

表2 実験環境(抜粋)

OS	Windows 7		
メモリ	4 GB		
CPU	Intel® Core™ i5		
クロック	1.8 GHz		
使用言語	Java(1.8.0_91-b14) R(3.1.0)		
鍵長	2048[bit]		

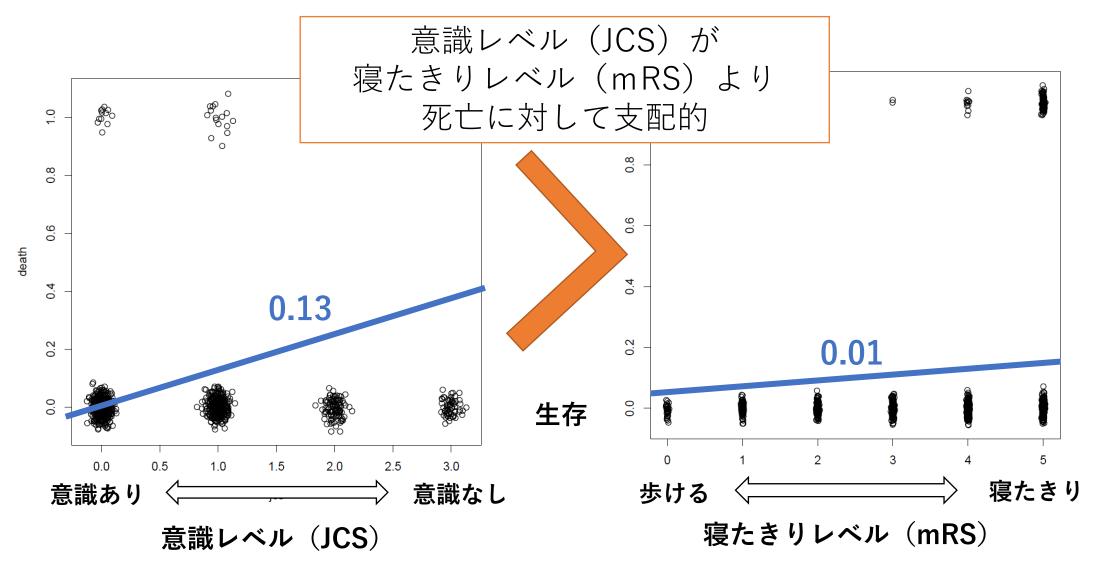

結果:計算結果の正確性

表 3 線形回帰モデルの係数と提案方式の比較 (n = 5000)

	提案方式			R		
variables	scLinear	coefficient	Std. Error	t value	Pr(> t)
lpha	-0.1731982	-0.1731982	0.0290099	-5.970	2.53e - 09	***
Age	0.0015410	0.0015410	0.0003576	4.310	1.67e - 05	***
Sex	-0.0217865	-0.0217865	0.0083993	-2.594	0.009519	**
JapanComaScale	0.1283596	0.1283596	0.0049296	26.039	< 2e - 16	***
modifiedRankinScale	0.0121227	0.0121227	0.0034845	3.479	0.000507	***
StrokeType	0.0292522	0.0292522	0.0073582	3.975	7.12e - 05	***
LiverDisease	0.0095770	0.0095770	0.0324591	0.295	0.767970	


- 提案方式と統計ソフトRの結果に、差は見られなかった (n=1000, 2000の場合においても差がなかった)
 - →提案システムは正確に計算できている

実験2 結果:線形回帰直線

パフォーマンス

• scLinearでのシステム全体の 実行時間は約4分

改良の検討

- 統計量の公開なく行いたい
- HElib(完全準同型暗号ライブラリ)を 用いて処理時間を推定

- [推定より]
- •暗号、計算の処理時間がscLinearより 長くなる
- ・計算処理の高速化が課題

表 5 処理時間の比較 [sec](m = 6, n = 1000)

	scLinear	HElib での推定
暗号化	223.742	749.262
計算	6.010	783.765
復号	5.736	4.354
合計	235.488	1537.382

おわりに

- 2組織間におけるプライバシーを保護した線形回帰を求める3つ のプロトコルを提案した
- scLinearシステムの正確性として、小数第6位までの有効精度であることを示した。

• 秘匿情報の安全を守るために、HElib を用いたシステムを実装する場合における, 計算処理の高速化を検討した.