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Analysis on the Sequential Behavior of Malware Attacks∗
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SUMMARY Overcoming the highly organized and coordinated mal-
ware threats by botnets on the Internet is becoming increasingly difficult.
A honeypot is a powerful tool for observing and catching malware and
virulent activity in Internet traffic. Because botnets use systematic attack
methods, the sequences of malware downloaded by honeypots have partic-
ular forms of coordinated pattern. This paper aims to discover new frequent
sequential attack patterns in malware automatically. One problem is the dif-
ficulty in identifying particular patterns from full yearlong logs because the
dataset is too large for individual investigations. This paper proposes the
use of a data-mining algorithm to overcome this problem. We implement
the PrefixSpan algorithm to analyze malware-attack logs and then show
some experimental results. Analysis of these results indicates that botnet
attacks can be characterized either by the download times or by the source
addresses of the bots. Finally, we use entropy analysis to reveal how fre-
quent sequential patterns are involved in coordinated attacks.
key words: PrefixSpan, malware, botnets, coordinated attack, sequential
pattern

1. Introduction

During the past decade, Internet malware threats have in-
creased and have become extremely sophisticated; they are
also becoming commercialized [1], [2]. Highly organized
and coordinated attacks by botnets are able to make mali-
cious activities such as distributed denial of service (DDoS),
e-mail spam, and click fraud [2]. A set of infected and com-
promised computers (bots) connected to the Internet is con-
trolled remotely by an unauthorized user (botmaster) and,
if employed for nefarious purposes, is called a botnet [3]–
[5]. To scale up the botnet, bots infect additional comput-
ers by sending malware, using various strategies such as
self-replicating worms, email viruses, or password guess-
ing. The botmaster can then send arbitrary commands to
the botnet to take control of victims. These commands are
issued using one of two control mechanisms [1], [4]. The
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first method involves a centralized architecture, in which the
bots in the botnet communicate with a central Command-
and-Control (C&C) server. Most botnets use Internet Relay
Chat (IRC) servers as C&C servers. The C&C server for-
wards commands received from the botmaster to all bots in
the botnet. In the second method, botnets use a distributed
control mechanism via a Peer-to-Peer architecture.

Fortunately, botnet activity can be traced by the obser-
vation of malware footprints of several bots spread across
the network. This method is used in the “honeypot” system.
In [6], McCarty gave an example of the implementation of a
honeypot that captures useful data about computer attacks in
the network. The honeypot is a decoy host pretending to be
a vulnerable computer that looks attractive to the attackers,
i.e., a host dedicated to receiving attacks [7]. The honeypot
records every inbound packet as an item in an access log,
comprising Timestamps, Honeypot ID, Source/Destination
port number, Source IP address, Source port number, Hash
value (SHA1), Malware name∗∗, and Malware file name.

In this work, we investigate 94 independent honeypots
that have observed malware traffic on the Japanese tier-1
backbone. The observations were coordinated by the Cy-
ber Clean Center (CCC). The CCC DATAsets for 2009 and
2010 comprise the access logs of attacks between May 1,
2008, and May 31, 2010. This paper explores and discovers
coordinated attack patterns in the CCC DATAset. Because
botnets employ systematic attack methods, the sequences
of malware downloaded by the honeypots have particular
forms of coordinated pattern.

Our contribution is to propose a new method for de-
tecting the coordinated malware servers that are the source
of frequent sequential attack patterns. We also give classifi-
cation results and characteristics of the frequent sequential
attack patterns. Our proposed method is based on a data-
mining algorithm, namely the PrefixSpan algorithm of Pei
et al. [8]. PrefixSpan is applied in this research because it
is an algorithm for the efficient mining of sequential pat-
terns in a huge dataset that avoids the requirement to con-
struct candidate sets and makes low memory demands [9].
Analysis based on entropy is then conducted, following
the widespread use of entropy analysis in network security
fields such as DDoS attack detection [10], anomalously ac-
cessed IP packets [11], and identification of packet malware

∗∗The Malware name is derived from the malware signature
used by commercial anti-virus software (Trend Micro).
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executables [12]. In this paper, we claim that entropy is a
measure of how evenly the sequential pattern is distributed
in the honeypot system, with the highest entropy score cor-
responding to a pattern observed at most honeypots and the
lowest score corresponding to a pattern observed at only a
few honeypots.

The remainder of the paper is organized as follows.
Section 2 introduces the concept of the PrefixSpan algo-
rithm. Section 3 describes our framework for mining se-
quential attack patterns in malware and shows the relation-
ships in the attack pattern, using source IP addresses and
timestamps. The entropy-based analysis showing the clas-
sification of the sequential attack pattern from the view-
point of commonly involved patterns of attack is presented
in Sect. 4. We briefly discuss related works and potential ap-
plications in the Sect. 5. Finally, Sect. 6 concludes the paper.

2. The PrefixSpan Algorithm

Sequential pattern mining is a method for discovering sub-
sequence patterns in a database. This method was intro-
duced by Agrawal and Srikant [13] and described as follows.
Given a set of sequences, where each sequence comprises a
list of elements and each element comprises a set of items,
and given a user-specified minimum support threshold as a
condition, sequential pattern mining aims to find all frequent
subsequences, i.e., the subsequences whose occurrence fre-
quency in the set of sequences is greater than or equal to the
minimum support threshold. A sequential pattern-mining
method called Prefix-projected Sequential Pattern Mining
(PrefixSpan), which discovers frequent subsequences as pat-
terns in a sequence database, was initially proposed by Pei
et al. [8].

Let ai, b j be items and let αi, β j be sequences of items,
where α = 〈a1a2 · · · an〉 and β = 〈b1b2 · · · bm〉. Then α is a
subsequence of β, denoted by α � β, if and only if there
exist integers j1, j2, · · · , jn such that 1 ≤ j1 < j2 < · · · <
jn ≤ m and a1 = b j1 , a2 = b j2 , · · · , an = b jn . A sequence
database S is a set of tuples 〈sid, s〉, where sid is a se-
quence id and s is a sequence. The support of a sequence
α in a database S is the number of tuples in the database con-
taining α, i.e., support(α) = |{〈sid, s〉|〈sid, s〉 ∈ S , α � s}|.
Given a positive integer min sup as a support threshold,
a sequence α is called a frequent sequential pattern in
database S if the sequence is contained by at least min sup
tuples in the database, i.e., support(α) ≥ min sup. The
number of items in a sequence is called the length of the
sequence, with a sequential pattern of length � being called
an �-pattern.

Let α and β be sequences 〈a1 · · · an〉 and 〈b1 · · · bm〉, re-
spectively. In terms of the PrefixSpan algorithm, we identify
the following.

1. Prefix and Postfix: sequence α is a prefix of β if and
only if ai = bi for i = 1, · · · ,m. For example, 〈a a b c〉
is a prefix of 〈a a b c d d a b〉. The sequence following
a prefix is its postfix, 〈d d a b〉 in this case.

Table 1 A sequence database.

Sequence id Sequence
100 PE WO TR
200 PE TR WO
300 BK PE TR TS WO
400 TS PE PE TR WO BK
500 PE WO TR WO

Table 2 Sequential patterns.

Prefix Projected Databases Sequential Pattern
〈PE〉 〈WO TR〉, 〈TR WO〉 〈PE〉:5

〈TR TS WO〉, 〈PE TR WO BK〉, 〈PE TR〉:5
〈WO TR WO〉 〈PE TR WO〉:4

〈PE WO〉:5
〈PE WO TR〉:2

〈WO〉 〈TR〉, 〈BK〉 〈WO〉:5
〈WO TR〉:2

〈TR〉 〈WO〉, 〈TS WO〉, 〈TR〉:5
〈WO BK〉, 〈WO〉 〈TR WO〉:4

〈BK〉 〈PE TR TS WO〉 〈BK〉:2
〈TS〉 〈WO〉, 〈PE PE TR WO BK〉 〈TS〉:2

〈TS WO〉:2

2. Projection: Let α, β, γ be sequences such that β �
α, γ � α. Sequence γ is a β-projection of α if and
only if (1) β is a prefix of γ, and (2) there exists no
longer subsequence of α such that β is its prefix. For
example, the c-projection of 〈a a b c d c d a b〉 is
〈d c d a b〉.
As an example, consider the sequence database S in

Table 1. If the user specifies min sup = 2, then the sequen-
tial patterns in S can be mined by the PrefixSpan method in
the following steps.

Step 1: Find 1-pattern sequences.
Scan the database S once to discover all frequent items
in the sequences. These are 〈PE〉:5, 〈WO〉:5, 〈TR〉:5,
〈BK〉:2 and 〈TS〉:2, where 〈pattern〉:count is the pair
of the pattern and the support count.

Step 2: Distribute the search space.
The projected database can be distributed across the

following five subsets according to the five prefixes that
resulted from Step 1: (1) those having prefix 〈PE〉, · · ·,
and (5) those having prefix 〈TS〉.

Step 3: Find subsets of sequential patterns.
These can be mined by constructing the five corre-
sponding projected databases and repeating the process
with each of them recursively.

Starting from prefix 〈PE〉, we can make a 〈PE〉-
projected database that comprises five postfix sequences:
〈WO TR〉, 〈TR WO〉, 〈TR TS WO〉, 〈PE TR WO BK〉, and
〈WO TR WO〉. In a recursive procedure, we return to Step
1 by scanning the 〈PE〉-projected database once, finding all
2-pattern sequences having prefix 〈PE〉, namely 〈PE WO〉:5
and 〈PE TR〉:5. Then the 〈PE〉-projected database is divided
into two subsets according to its two prefixes 〈PE WO〉 and
〈PE TR〉. Each generated projected database is then mined
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recursively. With prefix 〈PE WO〉 having the three postfix
sequences 〈TR〉, 〈BK〉, and 〈TR WO〉, mining these sequences
results in the sequential pattern 〈PE WO TR〉, which cannot
be scanned further because its support count is less than
min sup. With the prefix 〈PE TR〉 having the four post-
fix sequences 〈WO〉, 〈TS WO〉, 〈WO BK〉, and 〈WO〉, we have
the resulting 3-pattern 〈PE TR WO〉:4. The final projected
database and the sequential patterns are given in Table 2.

3. Sequential Patterns in Malware

3.1 Preprocessing Data

The CCC DATAset comprises the yearlong access logs of
attacks generated by 94 independent honeypots. Each hon-
eypot reboots every 20 minutes and, between each reboot,
the honeypot records every inbound packet in an access
log. The 20-minute period is called a time slot, or simply
a “slot”. In this work, we discover frequent attack patterns
based on the sequences of malware downloaded by honey-
pots. To implement the PrefixSpan algorithm, we preprocess
the data to form a text file. The text file comprises lines, with
each line being a sequence of malware names. (The term
line is interchangeable with slot, reflecting the terminology
for honeypots used later in our discussion.) The timestamps
for the downloaded malware determine the order of the mal-
ware within the slot. An example of preprocessed data is
given in Table 3.

3.2 Sequential n-Patterns in Malware Attacks

3.2.1 Coordinated Attacks

A botnet assault is associated with a highly organized, co-
ordinated, and systematic strategy. Consequently, the se-
quence of malware downloaded by the honeypots must be
in a particular form of coordinated pattern. To reveal the
coordinated attack patterns, we use the number of malware
items in a pattern, i.e., the length of the sequence/pattern.
Figure 1 shows the distribution of the lengths of sequences
in malware as the minimum support values are varied, where
the Y-axis gives the number of patterns (in thousands). The
distribution of the lengths of sequences tends to be between
length 2 and length 3 on the X-axis. These fundamental fea-
tures are useful in tuning the parameters in the data mining,
i.e., they become a reference point for selecting the sequence

Table 3 Example of preprocessed data for a sequence database.

Slot Sequence of malware names
0 TROJ_SYSTEMHI.BQ
1 KDR_AGENT.ANHZ UNKNOWN TROJ_SYSTEMHI.BQ BKDR_AGENT.ANHZ UNKNOWN
2 PE_BOBAX.AH
3 PE_BOBAX.AH UNKNOWN BKDR_AGENT.ANHZ
...

15323 PE_VIRUT.AV TROJ_IRCBRUTE.BW WORM_AUTORUN.CZU
15324 UNKNOWN PE_VIRUT.AV PE_VIRUT.AV WORM_AUTORUN.CZU TROJ_IRCBRUTE.BW

length.
Mining of the CCC DATAset using the PrefixSpan al-

gorithm produces a list of the sequential attack patterns of
malware. The list is sorted according to the number of slots
that are infected by malware. The accuracy of the mini-
mum support determines the number of sequential attack
patterns discovered. In this investigation, we select the min-
imum support for the sequential attack 2-patterns using the
assumption that each honeypot reboots every 20 minutes,
giving 72 slots per honeypot per day. If there are intensive
attacks in a certain day, the number of slots infected will be
less than or equal to 72. Let us suppose that 70 is reasonable
as the minimum support for discovering sequential attack
2-patterns. Referring to the trend of the distribution of the
lengths of sequences shown in Fig. 1, we choose 30 as the
minimum support for 3-patterns, i.e., 40% of the minimum
support for the sequential attack 2-patterns.

Now we show the overall sequential attack via the 3-
patterns harvested from the CCC DATAset. Figure 2 shows
the distribution of the average number of sequential patterns
per day over two years. It indicates a trend in which the
number of patterns increased significantly during 2010. This
phenomenon should challenge those interested in network
security to investigate further, particularly those involved in
the analysis and automated detection of malware attacks.

3.2.2 The Definition of Sequential Attack Patterns

The sequential attack patterns identified are indexed into the
form Px.y to simplify the naming of patterns, where x is the
sequence length of the pattern and y is its serial number in
the naturally ordered list. As shown in Fig. 1, the minimum

Fig. 1 Distribution of the lengths of coordinated attack patterns.
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support determines the number of patterns that result from
pattern discovery. For the purposes of index naming, the
minimum support needs to be reduced to 50% of that used
for investigation purposes, namely 35 and 15 for 2-patterns
and 3-patterns, respectively. As an example of index nam-
ing, pattern P3.1203 is a sequential attack pattern with a se-
quence length of 3 and occupying line 1203 in the list.

Based on the form of the malware sequence, the min-
ing results can be classified into two categories, duplicate
and nonduplicate, where a duplicate pattern, unlike a nondu-
plicate pattern, has the same malware appearing more than
once in it. For example, Fig. 3 (a) shows patterns P2.386 and
P2.300, and Fig. 4 (a) shows patterns P3.1203 and P3.857. These
patterns include the duplicated malware PE_VIRUT.AV and

Fig. 2 Distribution of the number of sequential attack patterns for 94
honeypots recorded by the CCC DATASet.

(a) Honeypot 1 (b) Honeypot 2

Fig. 3 Sequential attack 2-patterns of malware.

(a) Honeypot 1 (b) Honeypot 2

Fig. 4 Sequential attack 3-patterns of malware.

PE_BOBAX.AK.
The behaviors of the sequential attack patterns for all

honeypots seem to be similar. Therefore, we investigate just
two of the 94 sample honeypots further, namely Honeypot 1
running under Windows XP+SP1 and Honeypot 2 running
under Windows 2000. These two behaviors will be sufficient
to represent the behavior of the sequential attack patterns
in general. The results of mining the sequential attack 2-
patterns for these two honeypots are depicted in the column-
bars diagrams for Honeypots 1 and 2, respectively, shown in
Figs. 3 (a) and 3 (b), where the X-axis is the pattern name
and the Y-axis is the download frequency (in slots/year).

This study shows a significant relationship between
these two honeypots in terms of the order in the list of
the sequential attack patterns and the download frequency
over a year. The five top-ranked sequential attack 2-patterns
of malware from both honeypots have the same sequential
pattern. As shown in Figs. 3 (a) and 3 (b), the other se-
quential attack 2-patterns have only small differences in the
number of infected slots. The differences in the download
frequency for each sequential attack pattern are relatively
small. For example, the download frequencies of pattern
P2.453 for Honeypots 1 and 2 are 385 and 383 slots/year, re-
spectively, which is a difference of just two slots/year.

The mining of the sequential attack 3-patterns for the
two honeypots enables the extraction of 169 and 118 pat-
terns (including 29% and 26% of nonduplicate patterns), re-
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spectively. Figure 4 shows the column-bars diagrams for
the sequential attack 3-patterns for both honeypots. The
top rankings of the lists for both sequential 2-patterns and
3-patterns are dominated by duplicate patterns that contain
PE_VIRUT.AV and PE_BOBAX.AK. This duplication implies
that the malware has successfully infected the honeypot
more than once in a single slot. These facts may be regarded
as an indication that these are the most common malware to
have been employed by a botnet system.

3.2.3 Attack Pattern Based on IP Address and Timestamps

The botnet distributes malware to the bots via the Internet.
Learning the behavior of the spread of malware from its
source IP addresses and timestamps enables us to become
alert to threats of botnet attack. For this purpose, we inves-
tigate the source IP addresses and malware timestamps that
have been used by botnets.

First, we classify the sequential attack 3-patterns into
several groups based on their source IP addresses and mal-
ware timestamps. Table 4 shows the naming of the sequen-
tial attack 3-patterns based on source IP addresses, where
column IP Pattern Code lists the sequence of source IP
addresses of malware. Table 5 shows the naming of the
sequential attack 3-patterns based on malware timestamps,
where column Time Pattern Code lists the timelines for the
honeypots downloading the malware. For example, if pat-
tern P3.242 is of type A3E3, as shown in Table 6, the first and

Table 4 Naming of attack patterns based on source IP address.

IP Pattern Code IP Pattern

A1 S 1 S 1 S 1

A2 S 1 S 1 S 2

A3 S 1 S 2 S 1

A4 S 1 S 2 S 2

A5 S 1 S 2 S 3

Table 5 Naming of attack patterns based on timestamps.

Time Pattern Code Time Pattern

E1 T1 T1 T1

E2 T1 T1 T2

E3 T1 T2 T2

E4 T1 T2 T3

Table 6 List of the sequential attack 3-patterns for the malware.

#Honeypot ID Freq. Sequential Attack Patterns Ave[s] SD[s] Unique Host Type Gr.
P3.2351 168 TROJ_QHOST.WT WORM_HAMWEQ.AP BKDR_POEBOT.AHP 4.27 51.07 1 1 1 A1E1 A

1 P3.2483 74 TSPY_ONLINEG.OPJ TROJ_QHOST.WT BKDR_POEBOT.AHP 97.04 165.46 41 1 1 A4E1,3 A
P3.194 73 BKDR_RBOT.CZO WORM_HAMWEQ.AP TROJ_QHOST.WT 56.65 235.71 3 1 1 A1E1 A
P3.60 162 BKDR_POEBOT.AHP WORM_HAMWEQ.AP TROJ_QHOST.WT 34.12 175.92 8 1 1 A1E1 A

2 P3.2436 93 TSPY_ONLINEG.OPJ BKDR_POEBOT.AHP TROJ_QHOST.WT 72.66 191.33 34 1 1 A4E3 A
P3.194 71 BKDR_RBOT.CZO WORM_HAMWEQ.AP TROJ_QHOST.WT 381.48 478.60 5 1 1 A1E1,3 A
P3.1121 82 PE_VIRUT.AV BKDR_SDBOT.BU BKDR_VANBOT.HI 108.31 212.90 48 1 1 A3E1,3 B

1 P3.242 74 BKDR_SCRYPT.ZHB BKDR_SDBOT.BU BKDR_VANBOT.HI 732.12 422.57 11 1 1 A3,5E3 B
P3.264 57 BKDR_SCRYPT.ZHB PE_VIRUT.AV BKDR_SDBOT.BU 862.60 304.87 5 42 1 A5E3,4 B
P3.1154 98 PE_VIRUT.AV BKDR_VANBOT.HI BKDR_SDBOT.BU 75.54 177.64 55 1 1 A5E3 B

2 P3.256 75 BKDR_SCRYPT.ZHB BKDR_VANBOT.HI BKDR_SDBOT.BU 821.86 326.30 6 2 1 A2,5E3 B
P3.264 46 BKDR_SCRYPT.ZHB PE_VIRUT.AV BKDR_SDBOT.BU 968.42 258.12 6 34 1 A5E3,4 B

third malware items are downloaded from the same source
IP address (A3), and the second and third malware items are
downloaded at the same time (E3).

Source IP addresses can be used to distinguish the
sources of malware. Some malware comes from a unique
IP address and others from many IP addresses. The num-
bers of unique-host and IP-pattern types of the sequential
attack 3-patterns are given in Table 6. Some of the sequen-
tial attack 3-patterns are of the single-source type, but others
have two sources. Patterns in the top ranking are classified
into two groups based on similarities in download times.

This paper identifies two groups that are worthy of in-
vestigation, A and B, as shown in Table 6. The attacker
groups A and B differ in their source-IP pattern types. The
sequential attack 3-patterns in Group A more often use the
source-IP pattern types A1, A4 and E1. Malware that com-
pose patterns P3.2351, P3.194, and P3.60 have downloaded si-
multaneously only from a unique host, even though the first
malware item has downloaded from a few different unique
hosts. As shown in the unique host column in Table 6, the
leftmost field is the host of the first malware, followed by
the second and third. One difference in the type of source-
IP pattern in Group A is in the malware that composes each
pattern. Note that TSPY_ONLINEG.OPJ is the first malware
item that composes patterns P3.2483 and P3.2436, and it does
not appear in the other patterns in Group A. This malware
has downloaded from many different unique hosts, and at
different download times from the second and third malware
items. These patterns have 41 and 34 unique hosts at Hon-
eypots 1 and 2, respectively.

The attacks made by the sequential attack 3-patterns in
Group B of Table 6 often match the source-IP pattern types
A3, A5, and E3. All malware items in the sequential patterns
were downloaded from different hosts. However, it seems
only the first malware item has many unique hosts, whereas
the second and third items have only a few unique hosts.
This involves patterns P3.1121, P3.242, P3.1154, and P3.256. In
Group B, pattern P3.264 was downloaded by both honeypots,
and the second malware item in this pattern has a different
number of unique hosts. The first and third malware items
in pattern P3.264 have few unique hosts, but the second item
PE_VIRUT.AV has many different unique hosts, as shown in
the unique host column of Table 6. This can be considered
as evidence that the botnet employs a collaboration and co-
ordination strategy to attack victims.
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(a) Honeypot 1 (b) Honeypot 2

Fig. 6 Distribution of duplicate sequential attack 3-patterns of malware within a year.

Fig. 5 Time charts for coordinated attacks made by the sequential at-
tack 3-patterns: (A) P3.2483 belongs to IP pattern A4 and time pattern E3,
(B) P3.264 belongs to IP pattern A5 and time pattern E4.

Figure 5 shows time charts for coordinated attacks
made by the sequential attack 3-patterns P3.2483 and P3.264. It
illustrates how the coordinated attacks work. These are ob-
served in terms of the source IP addresses and timestamps
given in Tables 4 and 5. Consequently, naming and map-
ping the behaviors of sequential attack patterns may inform
us about the spread of malware through the network, and
lead us to identify and anticipate threats much earlier.

3.2.4 Distribution of Activity of Coordinated Attacks Over
a Year

Figure 6 shows the distributions of the duplicate sequen-
tial attack 3-patterns that were most frequently downloaded
by both honeypots, where the X-axis indicates the day of
the year and the Y-axis indicates the download frequency
in slots/day. The most common duplicate patterns are
PE_VIRUT.AV and PE_BOBAX.AK. Sequential attack pat-
terns are distributed uniformly during the year. As shown
in Fig. 6 (a), pattern P3.1203 has two peaks in February and
March 2009 with 10 slots/day, whereas pattern P3.857 is ob-
served at the maximum rate of 11 slots/day at the end of July
2008. Similarly, Fig. 6 (b) shows that pattern P3.1203 in Hon-
eypot 2 peaks at a similar infection date as the same pattern
in Honeypot 1, but with an infection rate of 12 slots/day.
Pattern P3.857 in Honeypot 2 has a peak in September 2008
of nine slots/day.

These two patterns in the honeypots are associated with
malware that has the ability to disable some services on sys-
tems running Windows 2000 and Windows XP such as In-

ternet Connection Firewall and Internet Connection Shar-
ing. They listen to various ports and connect to an IRC
server, and their potential for damage and propagation is
rated as medium to high [14]. Regarding the botnet attack,
we conjecture that the distribution diagram shown in Fig. 6
can be considered a distribution of the C&C activity of a
botnet system.

3.2.5 Some Classes of Coordinated Attacks

Nonduplicate sequential attack 3-patterns are similar either
in the name of the malware or in the download time. Group
A includes the same five malware names for both honey-
pots, but there are some differences in the sequence of mal-
ware patterns. Pattern P3.194 appears in both honeypots, as
shown in Table 6, but differs in download frequency by two
slots/year.

Similarly, Group B, as shown in Table 6, includes four
identical malware items for both honeypots, but their order
is partially reversed. Pattern P3.264 infects both honeypots
but differs in download frequency by around 11 slots/year.

Figure 7 shows the distributions for nonduplicate se-
quential attack 3-patterns captured during one year and their
classification into Groups A and B, as described above. Both
honeypots observed Group A, and found that it was down-
loaded within a 20-day period in October 2008. The maxi-
mum infection rate for each honeypot is 16 slots/day and 22
slots/day, respectively, as shown in Figs. 7 (a-A) and 7 (b-
A). The activity of botnet attacks in Group B looks like a
sustained burst (see [17]) throughout 25 days. The activity
ran from December 2008 to January 2009, and the maxi-
mum infection rate of 11 slots/day occurred at Honeypot 1,
as indicated by Figs. 7 (a-B) and 7 (b-B).

This investigation found great similarities between the
two honeypots. There are two common features of nondu-
plicate sequential attack 3-patterns. First, the pattern at-
tacked intensively for a short period, less than a month in a
whole year. Second, the number of slots infected is greater
than the number of duplicate sequential attack 3-patterns.

In this work, we also investigate the time intervals for
sequential attack 3-patterns downloaded by honeypots. The
time interval is defined as the difference in time between the
first and last malware item downloaded within a sequential
attack 3-pattern. We show the average (Ave) and standard
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(a) Honeypot 1 (b) Honeypot 2

Fig. 7 Distribution of nonduplicate sequential attack 3-patterns of malware within a year.

Fig. 8 Histogram of time intervals for the sequential attack 3-patterns of
malware.

deviation (S D) of time intervals for 3-patterns in Table 6.
The distribution for each average time interval varies con-
siderably. This may be a result of the dynamic behavior of
Internet traffic causing gaps in the time interval for some
download events or it may be caused by multiple botnet at-
tacks.

Pattern P3.194 in both honeypots has an average time in-
terval of less than 7 minutes and a standard deviation greater
than 7 minutes, but the distribution of its time interval, as
shown in Fig. 8, indicates that the time interval mostly takes
only a few values. This means that these patterns were ex-
ecuted at fixed constant time intervals, and it is therefore
evidence that the patterns in Group A were sent from the
same botnet system.

Conversely, pattern P3.264 in both honeypots has av-
erage time intervals greater than 14 minutes and standard
deviations of less than 6 minutes, but the histogram of its
time interval, in Fig. 8, indicates that the time interval is ran-
domly spread and widely distributed. Therefore, we claim
that these patterns in Group B are an outcome of a collision
of attacks made by a variety of botnets.

3.2.6 Performance of mining sequential attack patterns

We mined the sequential attack 2-patterns and 3-patterns us-

ing a machine with a 2.00 GHz Intel� Core
TM

2 Duo T5750
CPU running the Ubuntu 10.10 Operating System with GCC
version 4.4.5. The PrefixSpan algorithm was written in the
C++ programming language.

Figure 9 shows the performance of PrefixSpan algo-

Fig. 9 Performance of PrefixSpan method on mining sequential attack
patterns.

rithm on mining sequential attack patterns. Performance
test has involved pre-processing data with several size of
files in two honeypots. The pre-processing data are varied
from a day, a week, a month, 3 months, 6 months and a
year which are represented in the X-axis. A general perfor-
mance test has been taken as elapsed time of computation
s in the Y-axis. The slopes show the performance of Pre-
fixSpan, 47.058 bps and 50.000 bps in honeypot #1 and #2,
respectively.

4. Entropy Analysis of the Sequential Attack Patterns

Thousands of sequential attack patterns are generated by
mining the CCC DATASet of 94 honeypots. The exposure of
such a large quantity of valuable information from the dis-
covery of sequential attack patterns raises another challenge.
Classifying the sequential patterns in terms of entropy will
help us to understand how common some patterns are in at-
tacks on computer networks, and thereby identify significant
behaviors in sequential attack patterns.

We first select some sequential patterns from among
the thousands of pattern-mining results for the CCC
DATASet. For each honeypot, the results of mining sequen-
tial patterns are sorted by download frequency. The selec-
tion is made based on the highest download frequency at
each of the 94 honeypots for both duplicate and nondupli-
cate patterns.

The entropy of the sequential pattern S in honeypots is
defined by
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H(S ) = −
I∑

i=1

P(S i) log2(P(S i)), (1)

where P(S i) is the probability that the sequential pattern
S attempts to attack the i-th honeypot and I is the num-
ber of honeypots. The probability that each sequential pat-
tern attempts to attack a honeypot is the same. For exam-
ple, if there are 10 honeypots infected by the sequential
pattern S , then the probability of the sequential pattern is
P(S 1) = P(S 2) = P(S 3) = . . . = P(S 10) = 0.1. If the max-
imum number of honeypots I is 94, then the entropy score
will be in the range 0 ≤ H(S ) ≤ log2(94). The results of
the calculation are shown in Table 7, where the upper group
of rows contains duplicate patterns, and the lower group of
rows contains nonduplicate patterns.

The duplicate pattern P3.1203 in the upper group and the
nonduplicate pattern P3.194 in the lower group of Table 7
have the highest entropy scores. This indicates that these
patterns have attempted to attack the most honeypots. Fur-
ther examination of their investigation attack distributions
reveals that the two patterns have different characteristics.
Figure 10 (a) shows that pattern P3.1203 is distributed uni-
formly over one year. However, pattern P3.194 has a narrow
distribution at a specific date and a short duration, as shown
in Fig. 10 (b). The behavior of pattern P3.1203 suggests that
malware involving this pattern is commonly used by several
botnets. In contrast, pattern P3.194 is seen at most honey-
pots, but it infects at a specific date and for a short period.
Therefore, it can be deduced that pattern P3.194 was sent by

(a) P3.1203 (b) P3.194

Fig. 10 Distribution of sequential attack patterns that have a high entropy score within a year for three
different honeypots: (a) pattern P3.1203 and (b) pattern P3.194.

(a) P3.1924 (b) P3.2659

Fig. 11 Distribution of sequential attack patterns that have a low entropy score within a year for one
honeypot: (a) pattern P3.1924 and (b) pattern P3.2659.

a particular botnet for a particular attacking purpose.
The duplicate pattern P3.1924 in the upper group and the

nonduplicate pattern P3.2659 in the lower group each has a
low entropy score, as shown in Table 7. The distribution
of attacks for these kinds of patterns is seen for only one
honeypot, as shown in Fig. 11. They are therefore probably
either false detections of a pattern or accidental attacks by
inexperienced users.

Table 7 Entropy of the sequential attack patterns for all honeypots.

ID Pattern Name Entropy

P3.1203 PE_VIRUT.AV PE_VIRUT.AV PE_VIRUT.AV 6.0875

P3.2425 TSPY_KOLABC.CH TSPY_KOLABC.CH TSPY_KOLABC.CH 5.9307

P3.1590 PE_VIRUT.D-4 PE_VIRUT.D-4 PE_VIRUT.D-4 5.8826

P3.857 PE_BOBAX.AK PE_BOBAX.AK PE_BOBAX.AK 5.8073

P3.1463 PE_VIRUT.D-1 PE_VIRUT.D-1 PE_VIRUT.D-1 5.7814

.

.

.

.

.

.

.

.

.

P3.2796 WORM_RBOT.GDJ WORM_RBOT.GDJ WORM_RBOT.GDJ 2.0

P3.2528 TSPY_ONLINEG.TKJ TSPY_ONLINEG.TKJ TSPY_ONLINEG.TKJ 1.5850

P3.2676 WORM_POEBOT.AKE TSPY_KOLABC.CH TSPY_KOLABC.CH 1.0

P3.2611 WORM_KOLABC.BQ PE_VIRUT.YE WORM_KOLABC.BQ 0.0

P3.1924 PE_VIRUT.YC PE_VIRUT.YC PE_VIRUT.YC 0.0

P3.194 BKDR_RBOT.CZO WORM_HAMWEQ.AP TROJ_QHOST.WT 5.9307

P3.242 BKDR_SCRYPT.ZHB BKDR_SDBOT.BU BKDR_VANBOT.HI 5.7279

P3.2351 TROJ_QHOST.WT WORM_HAMWEQ.AP BKDR_POEBOT.AHP 5.6724

P3.134 BKDR_POEBOT.GN TSPY_KOLABC.CH WORM_SWTYMLAI.CD 5.5849

P3.1368 PE_VIRUT.AV TSPY_KOLABC.CH WORM_SWTYMLAI.CD 5.5546

.

.

.

.

.

.

.

.

.

P3.635 BKDR_VANBOT.FM TROJ_PROXY.WE TROJ_PACK.DT 1

P3.714 BKDR_VANBOT.LE TROJ_BUZUS.ADZ WORM_SPYBOT.ADS 1

P3.2336 TROJ_QHOST.KY BKDR_RBOT.IA TROJ_VUNDO.MCS 0

P3.2659 WORM_POEBOT.AKE BKDR_POEBOT.GN TSPY_KOLABC.CH 0

P3.2641 WORM_PAKES.ABU PE_BOBAX.AK BKDR_VANBOT.LE 0
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5. Discussion on Related Works and Its Potential Ap-
plications

5.1 Related Works

The study of datasets collected from honeypots provides
valuable knowledge on the attacking behavior of botnets.
These studies are classified into four categories; (1) heuris-
tics technique, (2) N-gram, (3) clustering, and (4) PCA.

(1) Heuristic.

Heuristic techniques for the detection of malware involved
in botnet coordinated attacks [15] provide useful informa-
tion for determining the characteristics of and relationships
between botnet attacks. However, heuristic approaches are
ad hoc and therefore unable to adapt to any new attack.

(2) N-Gram.

In [16], Lu Wei et al., study on an automatic probing of bot-
net communities. Using cross-association clustering and N-
gram algorithm for investigating the normal network traffic
on a large-scale WiFi ISP network. Authors claim success-
fully achieve an automatic application for classifying net-
work application communities and a generic method to dis-
tinguish malicious activity between human and bonets. Its
process needs three steps to accomplish the goal. First, clas-
sify the input network flows based on payload signature to
get the unknown flows. Next, examines the unknown flows
based on cross-association clustering method to classify it
into application communities. Finally, using N-gram algo-
rithm to define whether the network flows are generated by
humans or bots.

(3) Clustering traffic flows.

Thonnard and Dacier in [17], utilize graph-based cluster-
ing method for investigating datasets of Internet network
traffic collected by honeypots based on similarities of time-
signature. Authors have found that an appropriate similarity
measure on time series analysis enables the identification of
several worms and botnets activities. In other approaches,
such as that of Gu et al. [18], a framework method is devel-
oped that uses clustering and cross-correlation techniques
to identify a botnet. A filtering process is needed to elimi-
nate unnecessary traffic flows. The next step is to cluster the
flows based on similarities between malicious and commu-
nication activities. If a host belongs to both clusters, then
it is strongly identified as part of a botnet. However, this
method is not designed for the early detection of botnet at-
tacks.

(4) Principal Component Analysis (PCA).

Because of their coordinated and systematic attacks, botnets

generate activities with similar behavior patterns. In [19],
Husna et al. investigate the behavior patterns of spammers
based on the core similarities within spamming, particularly
their temporal characteristics. Principal component analy-
sis is applied to a feature set to determine which character-
istics are important for the highest diversity in the spam-
ming patterns, such as the active time, the content length,
and the frequency of emails. Clustering methods are then
used to classify spammers into botnet groups based on be-
havior similarities. The authors claim that this method en-
ables us to recognize botnets precisely from their similar
behavior when spamming a domain. However, a botnet is
constructed by collecting as many Internet-connected com-
puters as possible that are compromised by malware sent by
the attacker. Whereas this method will struggle only against
spamming generated by a botnet. This means that it may
be less effective to anticipate the construction of the botnet
in the network itself. In contrast, the classification of the
sequential attack patterns of malware based on the time of
sending by the attacker, as shown in Fig. 7, can identify the
first day of botnet construction. By doing this, we can take
action to anticipate the threat of the botnet at an early stage
and thus derivatives threats from botnet can be eliminated.

The reason why these works are not able to work for se-
quential attacks is because of malware downloaded by hon-
eypots have specific sequential patterns on various attributes
such as malware name (based on hash value), source IP ad-
dresses and time interval among malware sequences. An
important key point is sequential pattern of malware down-
loaded by honeypots in the continuous real time. Meanwhile
all approaches [16]–[19] mainly utilize clustering methods
for probing botnet attacks. Network flows are classified
based on certain criteria such as application communities,
source IPs, destination IPs, active time, content length, simi-
lar malicious activities and so on. Clustering process doesn’t
care enough to the sequences of malicious activity, but it
more pay attention in the similarity of clustering criteria.
Conversely, in fact, botnet attacks are established in a se-
quential manner. Then it becomes hard for detecting a new
malicious acvitity or botnet attack use clustering method.

5.2 Some Potential Applications

Analysis results give us great challenges to explore the pos-
sible applications. Nowadays a lot of network security ap-
plications offer various methods to overcoming the dark side
threats of the Internet. A lot of potential applications can be
achieved from these results, and three of them will be ex-
plained such as a new Intrusion Detection and Prevention
System (IDPS); a new botnets firewall which block out bot-
net sources; and tracking botnets which is possible to iden-
tify the sources of malware that sent by botnets and esti-
mates the size of botnet.

Now we explain the corresponding potential applica-
tions above in the following description.

IDPS The result of the proposed method is considerable to
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be a new type of the network-based IDPS. Because
botnets can generate many kinds of attacks which hard
for a specific IDPS technology for overcoming overall
attacks. Thus, Monitoring and identifying suspicious
activity based on the sequential attack patterns of mal-
ware downloaded by honeypot offers a wider scope of
IDPS. It implies that if we can anticipate botnets, then
we can eliminate many kinds of attacks which come
from botnets.

Botnet firewall The classification and behaviors shown in
Fig. 7 give valuable information as attack alerts. The
attacker needs 20 to 25 days (as mentioned in Subsec-
tion 3.2.5) to establish an infected computer network
as a botnet system. If the first day of infection by an at-
tacker is identified, we can take action to prevent an
ongoing threat. By mining periodically, we can ob-
tain real-time statistics similar to those shown in Fig. 7.
Therefore, the first day of infection can be identified by
monitoring the download frequency, and it could be a
start point to block out botnet sources.

Tracking botnets Due to botnets use systematic attack
methods, the sequences of malware downloaded by
honeypots have particular forms of coordinated pat-
tern, as shown in Fig. 5. Those are valuable informa-
tion which reveal specific attack for tracking botnets,
where malware come from and how big the botnets
are. Moreover, the sequential attack patterns of mal-
ware can explain botnet strategies how to compromise
with victim machines. Source IP addresses belong to
the sequential attack patterns of malware are consid-
ered as an evidence for network forensics.

6. Conclusion

Our analysis shows that coordinated attacks are performed
by multiple sequential attack patterns within a short period.
Malware used in a coordinated attack by sequential attack
patterns has characteristics in the sequence with respect to
either the download time or the source IP address of the
servers. Entropy analysis helps us to discover the most com-
mon sequential attack patterns involved in coordinated at-
tacks.

This paper reveals several behaviors that are useful for
alerting users to botnet attack threats. We have found that
the PrefixSpan method is sufficiently powerful for discov-
ering and analyzing sequential attack patterns in honeypot
systems.
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