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Abstract—We study the problem of predicting the rating for
an unseen item based on distributed dataset by two honest-
but-curious parties without revealing each private dataset. Our
proposed idea uses a new similarity measure such that simi-
larity aggregated with two local similarities is approximately
equal to the global similarity. We show the accuracy reduction
and the performance gain given by our proposed scheme based
on an experimental implementation, and claim that our scheme
allows parties to estimate prediction in a practical model with
negligible accuracy reduction.
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I. INTRODUCTION

1) Background: Privacy preserving data mining aims to
allow computation of useful aggregate statistics over the
entire dataset without compromising the privacy of individ-
ual data. Parties wish to collaborate in obtaining aggregate
results, such as the recommendation systems [2], the Naive
Bayes classifier [3], the association rule mining [8], but may
not fully trust each other. Parties may be competitors in the
same field or be not allowed to exchange their customer’s
dataset by their privacy policies.

Vertically partitioned data is an important data distribu-
tion model often found in real life. For example, Table I
illustrates two datasets partitioned vertically and owned by
party A with attribute A1 and A2; and party B with attribute
A3 and a target class C, indicating whether or not to play
tennis on a particular day. Parties A and B collect the
different features, e.g. temperature, humidity or windy, but
on the same day. Collaboratively performing Naive Bayes
classification allows them to predict accurately if tennis is
to be played or not; i.e. predict C given A1, A2 and A3,
however they can not share other’s dataset partitions.

Vaidya and Clifton presented the secure protocol for Naive
Bayes classifier to the vertically partitioned dataset without
revealing individual data [3]. Their protocol combines the
homomorphic public-key encryption algorithm to compute
scalar product of two vectors and the secure function eval-
uation [10] for comparison of class cy in C in terms of

Table I
SYNCHRONOUSLY (VERTICALLY) PARTITIONED DATASET

party A party B
day A1 A2 A3 C
1 sunny hot high no
2 sunny hot low yes
3 rainy hot high yes
4 rainy cool low yes

conditional attributes, i.e. Pr(C = cy|A1 = a1, A3 = a3).
2) Our Goal: In this work, we focus on the privacy-

preserving protocol for Collaborative Filtering (CF) [16], a
method to estimate the recommendations of unseen items
based on the preference of communities of those who have
evaluated the target items and have the similar preferences
with the user who wish to get the recommendation. Canny
[14] uses an additive homomorphic cryptosystem to perform
Singular Value Decomposition (SVD) of the matrix of rat-
ings on items by users. In [21], Ahmad and Khokhar studied
the modified version of Canny’s protocol using the modified
ElGamal cryptosystem instead of the Paillier cryptosystem
[15]. Katzenbeisser and Petkovic proposed an application
to consumer healthcare services using the cryptographic
private profile matching techniques based on homomorphic
encryption algorithms [20].

All existing attempts, however, have been made only
on horizontally partitioned datasets. Vertically partitioned
datasets involve the transfer of confidential data between
multiple enterprises, and thus is not trivial. Therefore, we
introduce a public-key algorithm with additive homomorphic
property, which allows us to performe collaborative filtering.
However, the naive implementation has the following draw-
backs;

1) the large number of ciphertexts are generated for every
subsets of the user set of size n, and

2) the scalability with increasing number of users.

In order to address the above difficulties, we propose the
followings;

1) CF with Quasi-homomorphic similarity



allows to compose local similarities which approxi-
mates the global similarity with small errors,

2) Pre-computation
helps to save encryption time of rating values in
multiple recommendation queries,

3) k-Nearest Neighbour
works for reducing the number of ciphertexts to be
sent to parties distributed over the network.

We evaluate the proposed schemes using a sample imple-
mentation with a public dataset, MovieLense[1], and show
that the schemes are efficient and accurate to predict the
ratings.

II. PRELIMINARIES

A. Model

Let U = {u1, u2, . . . , un} be a set of users, where n
is the number of users. Let I = {i1, i2, . . . , im} be a set
of items, where m be the number of items. Let ry,j be a
rating given by user uy for item ij , for y = 1, . . . , n, and
j = 1, . . . , m. Domain of rating value is 0, 1,.., 5, where 5
is the highest and 0 indicates missing value. Discrete value
is used to evaluate items. Users do not evaluate all items.
We denote a missing rating by ry,j = φ.

We assume that the matrix of ratings contains many
missing elements, and thus it is a sparse matrix.

The goal of CF is to predict a missing rating of an
item based on the other users’ preferences to the given
item. Our model supposes that users are willing to get
recommendations for items that they are not seen before,
but at the same time they are concerns privacy of rating
made by themselves.

B. User-based Collaborative Filtering Algorithm

Collaborative Filtering (CF) is an algorithm to estimate
missing ratings based on the preferences database. The
prediction for user u for item o is given by a weighted
average of users whose ratings are similar to the target

user: r̂u,o =
�

v∈U−{u} su,vrv,o
�

v∈U−{u} su,v
,where su,v is the similarity

between users u and v. The weight s(uy, uj) is the similarity
measure between users uy and uj , such as the Pearson
correlation coefficient, or the Euclidean distance. In this
work, we use a similarity measure defined as

su,v =
1

1 +
∑

i∈Iu∩Iv
(ru,i − rv,i)2

,

where Iu is the set of items which rated by u-th user.

C. Homomorphic Encryption

To preserve the privacy of users, we use a public-
key cryptosystem E which satisfies an additively
homomorphic property, i.e. taking message M 1, M2,
E[M1]E[M2] = E[M1 + M2], E[M1]M2 = E[M1M2]. For
instance, the Paillier cryptosystem[15] and the modified
ElGamal cryptosystem are widely used. Both allow us to

get key generation and decryption processes distributed
among semi-trusted authorities sharing private key. And
we can decrypt by decryption function D. For instance,
D[E[M1]] = M1.

The Paillier is more efficient than the ElGamal in the sense
of decryption overhead, while the latter requires a sort of
brute force technique (in the limited domain) for decrypting
candidates of messages. We implement the Paillier cryp-
tosystem for performance evaluation since the computational
cost for a single encryption is significant in our proposed
protocol.

III. PROPOSED SCHEME

A. Overview

Our protocols use Quasi-homomorphic similarity which
allows us to compose local similarities which approximates
the global similarity with a small error. Pre-computation
technique helps to save on time for encryption of rating
values. Finally, the k-Nearest Neighbour works for reducing
the number of ciphertexts to be sent to parties distributed
over a network.

B. Naive CF

Let us recall the prediction of rating for item o and user
u, r̂u,o, given by

r̂AB
u,o =

∑
v∈U−{u} rv,o/(1 + rA

v + rB
v )

∑
v∈U−{u} 1/(1 + rA

v + rB
v )

(1)

=

∑
v∈U−{u} rv,o

∏
� �=v(1 + rA

� + rB
� )

∑
v∈U−{u}

∏
� �=v(1 + rA

� + rB
� )

,

where
rA
v =

∑

i∈IA

(rv,i − ru,i)2. (2)

Note that performing of prediction consists of (1) local
computation, e.g. rA

� , rB
� , and (2) joint computation with

A and B, e.g. rA
� rB

� . The former can be locally performed,
while the latter needs interaction between the two parties,
which can be performed employing secure scalar product
protocol. We show a cryptographical protocol for computing
the prediction of rAB

u,o without revealing ratings as Algorithm
1.

C. Quasi-Homomorphic Similarity

The notion of similarity s satisfies su,u = 1 (idempotent),
su,v = sv,u (commutative), and su,o + so,v ≥ su,v (transi-
titive). For distributed computation, we prefer the definition
of similarity that satisfies homomorphic property. Namely,
mapping s is homomorphic if and only if there exists a
function f such that

s(au ∪ bu, av ∪ bv) = f(s(au, av), s(bu, bv))

for any au, av and bu, bv . au, av are vector of u-th user’s
items. Those items are element of IA. Similarly, bu, bv are



Algorithm 1 Naive CF
Input: A’s ratings rv,i i ∈ IA, B’s ratings rv,i i ∈ IB

Output: predicted ratings r̂u,o

1) Party A computes ratings rA
v locally for all i in IA

according to Eq. (2).
2) Similarly, party B computes ratings rB

v locally for all
i in IB .

3) B sends E(rv,o

∏
� �=v rB

� ) and E(rv,o) to A.

4) A computes y =
∏

v∈U E(
∏

� �=v rB
� ru,o)rA

v and z =∏
v∈U E(

∏
� �=v rB

� ru,o), after that A sends y and z
back to B.

5) B has the prediction for user u and item o as rAB
u,o =

D(y)/D(z).

elementof IB . For instance, a cardinality s(u, v) = |IA∩IB |
has a function f(x, y) = x + y, and squared Euclidean
distance s(a, b) = ||a− b||2 satisfies homomorphic, though
distance does express the degree of anti-similarity. Well-
known similarity measures such as Pearson correlation co-
efficient and cosine similarity are not homomorphic.

Fully homomorphic similarity is hard to define. Instead,
we define quasi-homomorphic similarity as one that the
global similarity can be composed of the local similarities.
Formally, a similarity s is quasi-homomorphic if and only
if there exists small constant ε such that

|s(au ∪ bu, av ∪ bv) − f(s(au, av), s(bu, bv))| ≤ ε

for any au, av ∈ IA and bu, bv ∈ IB . In a later section,
we use an inverse squared Euclidean distance as the quasi-
homomorphic similarity in order to perform prediction of
items from vertically partitioned datasets.

A normalisation of similarity su,v is defined as
s̃u,v = su,v�

�∈U−{u} su,�
. In a vertically partitioned dataset, a

user-item ratings matrix is divided into two matrices owned
by parties A and B. A local similarity is evaluated from
only the item set owned by party A, and is written as sA

u,v.
Similarly, sB

u,v is the local similarity computed for only the
item set owned by party B. On the contrary, we often say
global similarity computed over the entire dataset.

D. Basic Scheme

The drawback of the Naive scheme is the complexity.
Expanding Equation (2) generates all possible subsets of the
set of users, which results in O(n2) ciphertexts to be sent,
where n is the number of users. Hence, we propose a light-
weight prediction scheme replacing the global similarity
with the composition of two local similarities as follows:
r̂A∗B
u,o = rA

u,o · wA + rB
u,o · wB , where w is a weight defined

by wA = mA

mA+mB
, and mA is |IA|, mB is |IB |.

Correspondingly, the overall prediction r̂u,o for user u

and item o is given by r̂u,o =
�

v∈U−{u} s′
u,vrv,o

�
v∈U−{u} s′

u,v
, where s′

Algorithm 2 Basic Scheme
Input: A’s ratings rv,i i ∈ IA, B’s ratings rv,i i ∈ IB

Output: prediction r̂A∗B
u,o for user u and item o.

1) Party A computes local normalized similarity s̃A
u,v of

user u for every user v ∈ U − {u}.
2) Party B computes local normalized similarity s̃B

u,v

of user u for every user v ∈ U − {u}, encrypts
with B’s public key and then send to A ciphertexts
E(r1,o), . . . , E(ru−1,o), E(ru+1,o), . . . , E(rn,o).

3) A computes y = E(r1,o)s̃A
u,1 · · ·E(rn,o)s̃A

u,n , and
sends back to B.

4) B decrypts y and performs the prediction of item o
for user v as

r̂A∗B
u,o =

mB

m
D(y) +

mA

m

∑

v∈U−{u}
rv,os̃

B
v,o, (3)

where s̃B
v,o is the local normalised similrity evaluated

by B.

is normalised local similarity, i.e., s′u,v = su,v�
l∈U−{u} su,l

. The
Algorithm 2 gives the Basic Scheme.

(例 III.1) We show local and global similarities in Table II.

Table II
LOCAL AND GLOBAL SIMILARITIES

sA sB sAB sA∗B

u1 0.839 0.294 0.750 0.512
u2 0.076 0.117 0.100 0.101
u3 0.083 0.588 0.150 0.386
u4 - - - -

Note that Equation (3) can be rewritten as

r̂A∗B
u,o = r̂A

u,o

mA

m
+ r̂B

u,o

mB

m
,

which implies the weighted sum of two local predictions,
r̂A
u,o and r̂B

u,o, according to the ratio of mA and mB .

E. Pre-computation Scheme

The basic scheme requires to perform n − 1 encryp-
tions, which increases with an increase in the number of
users. In order to address the heavy computational overhead
for encryption, we present an efficient scheme with pre-
computation of ratings.

The idea is based on the fact that the domain of en-
cryption is limited within the set of ratings. The range
of values in a typical dataset is D = {1, 2, 3, 4, 5}.
Therefore, pre-computing all possible encryptions of rating
values saves the processing time for encryption. Namely,
the n computations is reduced up to 5 computations,
D = {E(1), E(2), E(3), E(4), E(5)}. These are not secure
because the same rating values have the same encryptions. In



Algorithm 3 Pre-comutation Scheme
Input: A’s rating values rv,i i ∈ IA, B’s rating values rv,i

i ∈ IB .
Output: prediction r̂u,o for user u and item o.

1) (pre-computation step) Party B encrypts all elements
in the domain of rating, D, and encrypts 0 for p times.
Let Z be the set of “zero”ciphertexts.

2) (prediction step) B generates ciphertext for plain rat-
ing value x as E(x) = cx · d, where cx is the x-th
ciphertext in D and d is uniformly chosen from Z .
The rest of prediction are as the same as the basic
scheme.

Algorithm 4 k-Nearest Neighbor Scheme
Input: A’s rating values rv,i i ∈ IA, B’s rating values rv,i

i ∈ IB .
Output: k-th prediction r̂A∗Bk

u,o for user u and item o.

1) Same as Step 1 in Basic Scheme.
2) B sorts the set of users U − {u} in order of nor-

malized local similarity s̃B
u,v and choose the k highest

users, letting U(u, k)B be the subset of U . Then, B
performs normalization in U(u, k)B so that the local
similarities s̃Bk

u,v in U(u, k)B sum up 1.0 and for each
v ∈ U(u, k)B , and sends encryptions (v, E(rv,o)) to
A.

3) For each of U(u, k)B, A computes

y =
∏

v∈U(u,k)B E(rv,j)s̃
Ak
u,j and sends it back

to A.
4) Finally, B decrypts y and predicts the target rating

value in conjunctions the normalized local similarities
s̃B

v,o in Equation (3).

order to make ciphertexts for the same ratings indistinguish-
able from each other, we multiplies a “zero” ciphertext of 0
to the ciphertexts, i.e. E(0)·E(x) gives new ciphertext E(x) ′

whose plaintext remains unchanged. The zero ciphertext is
chosen from the set of ciphertext Z = {E(0)1, . . . , E(0)p}.

The Algorithm 3 shows the overall steps for the pre-
computation technique.

F. k-Nearest Neighbour Scheme

The prediction of rating value is based on the similarities
between users. Hence, the prediction using the k nearest
users can improve the performance of prediction without
losing accuracy. The k-Nearest Neighbour selection is one
of the well-known techniques in collaborative filtering and
is defined in Algorithm 4.

IV. EVALUATION

A. Performance in Trial Implementation

We implemented our proposed schemes on Java SDK ver-
sion 1.6 with BigInteger class. Our trial implementation

performs interaction between a server and a client in the
same local area network. Table III1 shows the performances
for fundamental cryptographical primitives that were run on
MacOS X (Core 2 Duo 2.26 GHz, 4GB RAM). We use the
performance constants, i.e. �c, te and td, to estimate the total
performance with large dataset.

Table IV shows the communication costs for the proposed
schemes. In the table, �c is the size of ciphertext, typically
2, 048 bit. Note that k-NN reduces the size up to k and can
be used with the pre-computation scheme.

Table V shows the number of operations; encryption,
multiplication and exponentiation for each of the proposed
schemes. Since the overhead of encryptions dominates the
overall performance, the pre-computation technique would
help in significant reduction of processing time.

Table III
PERFORMANCE OF OUR TRIAL IMPLEMENTATION

attribute value
public-key algorithm 2048 bit Paillier

size of ciphertext �c = 256 [byte]
encryption time te = 160 [ms]
decryption time td = 248 [ms]

exponentiation time tm = 0.093 [ms]
multiplication time tm = 0.102 [ms]

B. Processing and communication cost

The experimental dataset to evaluate the practical per-
formance of the proposed scheme is “MovieLens”[1] with
n = 943 users, m = 1, 682 items, and 100, 000 evaluted
raiting values. We use random vertical partitioning such that
A and B have equal size of portions of the dataset.

We show the processing time with respect to number of
users n in Figure 1. The Basic scheme takes 152 seconds
at n = 900, while the Pre-computation scheme runs in 4.45
seconds, which is 34-fold times improvement against the
Basic scheme.

Table IV
COMMUNICATION COSTS

scheme B to A A to B
2. Basic �c(n − 1) �c

3. Precomputation �c(n − 1) �c

4. k-NN �c(k − 1) �c

Precomputation&k-NN �c(k − 1) �c

Table V
COMPUTATION COSTS FOR EACH STEP

scheme E(M) E(M1) · E(M2) E(M1)M2

2. Basic n − 1 n − 1 n − 1
3. Precomputation 0 2(n − 1) n − 1

4. k-NN k − 1 k − 1 k − 1
Precomputation & k-NN 0 2(k − 1) k − 1

1The exponents are limited within relatively small numbers in CF and
hence the processing time is extremely smaller than that of an ordinary
modular exponentiations with exponent chosen from full domain.
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The communication is linear to the number of users in
the matrix.

C. Accuracy

We evaluate the accuracy of proposed schemes for pre-
dicting 100 values randomly chosen out of 100,000 rating
values in the dataset. The schemes are (1) Global NN CF
– k-NN CF applied to the joint datasets, (3) Aggregated
NN CF – k-NN CF applied to the composite dataset from
two partial datasets. We shows the experimental results of
the Mean Absolute Error (MAE) with respect to k for four
schemes in Figure 2. Note that k = n corresponds the results
of the Basic scheme.

The MAE decreases as k, size of rating values used for
prediction, increases. The minimum MAE is 0.9595 at n =
942, where aggregated scheme has MAE of 0.9588 with
distance of 0.007. The mean errors are reduced with even
smaller set of the size k, hence the k-NN performs well for
accuracy.
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The source of MAE come from the inconsistency of the
composite (approximate) similarities and the global (true)
ones. Let us recall the composite similarities defined as
ŝ = sA · wA + sB · wB, where sA and sB are local simi-
larities evaluated for partitioned datasets by parties A and
B, respectively. The weights, wA and wB , adjust the skew
of partition, particularly wA = wB = 1/2 in our experiment.

In order to compare the correlation between local and
global similarities, we show ths scatter plot between these
similarities in Figure 3.

From the scatter plot, we observe a weak positive correla-
tion between the global and the composite similarities. The
Pearson correlation coefficient is 0.673, which varies for the
target users. The possible reason of inconsistency includes
the skew of the target user, the distribution of rating values,
and the digit of finite precision.
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Figure 3. Scatter plot between the global and the composite (aggregated)
similarities

D. Security

The confidentiality of rating values is preserved based on
the security of public-key algorithm used to encrypt values.
Hence, party A has no chance to obtain the B’s private rating
in all of proposed schemes since what (s)he learns from the
execution of schemes is the n ciphertexts sent from party
B.

However, B has some advantage to learn something from
B’s rating since (s)he eventually learns the result of decryp-
tion of y, which yields the sum of the product of rating and
A’s local similarities, i.e., r1,oŝ

A
u,1 + · · · + rn,oŝ

A
u,n, where

rv,o can be replaced with arbitrary values. For instance,
manipulated vector (1, 0, . . . , 0) allows A to learn ŝA

u,1.
In this paper, we assume “semi-honest model”, in which

parties follow the protocols as specified but are curious
about what the counterpart has. Hence, the above malicious
behavior is not expected to be exhibited in our scenario. In
order to prevent malicious A from intentionally manipulating
rating values, we need to add the zero-knowledge proof



protocol to ensure that vector contains enough entropy to
make the identification to B’s local similarity impossible.
This is one of the future challenges of this work.

V. CONCLUSION

In this paper, we proposed the series of schemes for
collaborative filtering from vertically partitioned datasets.
Our proposed schemes are efficient against the naive but
perfect privacy collaborative filtering protocols in terms of
computation and communication costs, from O(n2) to O(n),
and O(k) in k-Nearest Neighbor scheme. The schemes
preserve the accuracy of prediction of ratings, which can
be improved with the number of ciphertexts to send, k. Our
experimnets show that the pre-computation technique saves
the computation time by 34 times with the size of 900 users
and the MAE is 0.9588 for the composite similarity.

Our future works include the study with variety of simi-
larities from the view point of preserving privacy, improving
efficiency and the comprehensive evaluation of collaborative
filtering algorithms.
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