Synthesis of Secure Passwords

Tomoki Sato Hiroaki Kikuchi

Graduate school of Engineering, Tokai University

What is "good" password?

- A good password is composed of common words that are easy to type in
- A good password is an extraordinary phrase that is hardly ever used
 - These two requirements conflict with each other

"book and apple"

"Wingerdium Leviosa"

Existing study

- [1]Nishizaka et al."PIN authentication using Japanese password over cellular phone", IPSJ Tech Report, 2010.
 - Automatic password generation based on input method T9
 - Generated password is not always easy for humans to remember

Our Objective

 We propose a new synthesis method for good passwords that satisfy both requirements for good password

Our Approach

- Hypothesis
 - If each of two words w₁ and w₂ has a high term frequency then the combination is not quite common
 - Thus, the combined words gives strong impression

W 1	frequency		W 2	frequency
revolution	39 million	G	ranma	6.5 million

Combined word	frequency
revolution Granma	1

Our Contributions

- 1. New measure to evaluate degree of impression
- 2. New password synthesis scheme
- Empirical study based on Google N-gram as a corpus

Formal Definitions

Conflict C

- C represents a degree how much reduction in frequency is given by combination of two words.
- Impression /
 - I is a measure based on subjective evaluation for words.
- Accuracy A (in remembrance)
 - A indicates how accurate subject can remember a given synthesized words for long term.

Conflict C

- Definition 2.1
 - A conflict of composition w₁w₂ is

$$C_x = -\frac{1}{10} \log \frac{S+1}{W_1 + W_2}$$

- W₁, W₂, S: Frequency of w₁, w₂, Synthesized word
 - Frequency of word is defined in a set of web pages crawled by the search engine

$$C_x = -\frac{1}{10} \log \frac{1+1}{39,700,000+6,500,000} = 0.736$$

Example of conflict C

password	W_1	W_2	S	C
privacy festival	1.39×10 ⁷	1.17×10 ⁷	2	0.773
revolution Granma	3.97×10 ⁷	6.5×10 ⁶	1	0.736
eventually fill-in	1.69×10 ⁷	3.74×10 ⁷	6,630	0.391
first thought	1.5×10 ⁸	1.69×10 ⁸	54,300	0.377

Impression 1

Definition: impression for word x is

$$I_x = \frac{1}{n} \sum_{j=1}^{n} I_{x,j} - \bar{I}_j$$

- I_{x,j} is a degree subjective impression of j-th test subject on word x
- \bar{I}_j is average of all rating values evaluated by j-th subject
- The rating value range from 1(low) to 5(high)

Example of Impression I

password	subject1	subject2	subject3	Impression
privacy festival	5	5	3	2.05
revolution Granma	5	4	3	1.83
eventually fill-in	1	4	2	-0.28
first thought	1	2	2	-0.06
$ar{I}_j$	3	3.75	2.5	

Accuracy A

- Definition 3.1
 - Accuracy of word x for short-term memory defined

$$A_x = rac{1}{3n} \sum_j a_{j,x}$$
 $a_{j,x}$ $a_$

Example of Accuracy A

password	Subject1	Subject2	Subject3	Subject4	A
privacy festival	1	3	3	3	83.3%
revolution Granma	3	3	3	3	100%
eventually fill-in	0	3	3	0	50%
first	2	3	0	0	41.7%

Proposed Scheme

- Input : corpus
 - 1. choose top 10,000 words in frequency from corpus(dataset),
 - 2. classify the words into subsets, *noun*, *verb*, *adjective*, and *adverb*.
 - 3. choose randomly two words from categories, (adverb + noun) or (noun + noun), and then grade pairs in conflict C.
- Output: synthesized passwords

Google N-gram

- A Japanese dataset extracted from web pages collected via a crawler
- It contains many words thats are very commonly used in the Internet

Example of Google N-gram

word	frequency
"capsule"	1,604,601
"horse"	2,967,320
"joint"	1,484,470

Experiment

- 1. Subjective evaluation of impression I
 - 18 subjects(students) evaluate passwords and answer impression degrees
- 2. Accuracy of remembrance
 - 16 subjects remember 4 synthesized passwords for each subject
 - 3 days later, they try a test to see how accurately they can remember 4 passwords

Fig. 1 : Impression I in terms of conflict C

correlation coefficient: 0.617

Fig. 2: Accuracy A in terms of conflict C

correlation coefficient: 0.431

Fig. 3: Accuracy A in terms of impression I

correlation coefficient: 0.733

Discussion

In order to clarify the reason of failure

TRUE	answer	reason
privacy festival	private photo	similar words
eventually funny (可怪しい)	eventually susceptive (可怪しい)	homonym
first thought (初めて)	begin thought (はじめて)	Hiragana-Kanji conversion

Conclusion

- We have proposed a new way to synthesize good passwords that are easy to remember
- Our experiment shows a clear positive correlation between conflict C and impression
- The synthesized passwords perform well in term of accuracy A in memory